University of Rhode Island

Dept. of Electrical and Computer Engineering
Kelley Hall

4 East Alumni Ave.

Kingston, RI 02881-0805, USA

Technical Report No. 032002-0103

Multipath Execution on a Large-Scale Distributed
Microarchitecture

A. Khalafi, D.A Morano, D.R. Kaeli
{akhalafi, dmorano, kaeli}@ece.neu.edu
Department of Electrical and Computer Engineering
Northeastern University
and
A K. Uht
uht@ele.uri.edu
Department of Electrical and Computer Engineering
University of Rhode Island

February 15, 2002

Abstract

This paper explores the implementation of multipath execution on a large distributed microarchitecture.
Larger microarchitectures can speculatively execute possibly several hundreds of instructions simultane-
ously. This provides a means to extract larger amounts of instruction level parallelism even from programs
that are very sequential in nature. However, conditional branches present a difficult challenge when a very
large number of speculative instructions have to be squashed as a result of a misprediction. Multipath
execution is a means to address this problem by avoiding or reducing the penalties of some branch mis-
predictions when instructions from both outcomes of the branch were already executed within the core of
the processor.

We briefly present the outline of a large-scale distributed microarchitecture and discuss how we overlay
multipath execution on it. We provide simulation results for several microarchitectural configurations that
demonstrate the positive effects of multipath execution in reducing the penalties associated with branch
mispredictions.

1 Introduction

Performance penalties due to mispredicted branches continue to present a challenge for achieving higher
performance execution of single threaded programs. These penalties restrict the instruction level parallelism
(ILP) that might be achieved unless they can be reduced. One approach towards reducing the negative effects
of mispredicted branches, and a moderately successful one, has been the pursuit of better branch predictors.
However, many branches in typical programs remain difficult to predict accurately and these continue to limit
performance in many codes.

This work was partially supported by the National Science Foundation through grants MIP-9708183 and EIA-9729839; by
the URI Office of the Provost; and by the Spanish Ministry of Education. Patents applied for. A version of this work has been
submitted for publication. Copyright 2001, the authors.

Another approach towards mitigating the effects of mispredicted branches has been that of attempting
to address the problem of executing down both paths of a branch in some measure or another before the
branch is able to resolve. This approach is not new but presents complexity problems that have made it less
than attractive for many practical processor designs. However, with the advent of ever increasing amounts of
speculative execution, the need to address the problems associated with mispredicted branches has only grown
worse.

Current commercial machines only allow for modest amounts of speculative execution (usually several
instructions to less than about 40 instructions per thread). However, for those computer applications that
demand it, future machines may need to execute upwards of one hundred to several hundreds of instructions
speculatively in order to maximize execution performance. This trend will only increase the pressure to try
to reduce the effects of branch mispredictions.

Our work presented in this paper is oriented towards reducing the negative effects of mispredicted branches
through multipath execution while doing so on an aggressive large-scale (able to speculatively execute possibly
hundreds of instructions simultaneously) distributed microarchitecture. A large microarchitecture offers the
possibility to significantly step up program speedups through the exploitation of ILP. However, many problems
common to more conventional processor designs are either at least as difficult to deal with on a large-scale
microarchitecture or indeed become more difficult to deal with. The problem of mispredicted branches is
one of these latter problems. The penalty associated with a mispredicted branch can now mean the possible
squashing and associated opportunity lost of possibly hundreds of instructions that were in flight.

Another issue that arises in large-scale microarchitectures is the problem of efficient execution resource
usage. As we may speculatively execute many branch paths ahead of execution commitment, the likelihood of
the most recent (latest) speculatively executed instruction to be committed (part of the program’s committed
execution trace) tends towards zero. This occurs because as each new speculative branch is encountered,
speculative execution continues down one of its outgoing paths. The probability of commitment for instructions
on that outgoing path is the product of the probability that the branch will be committed, times the probability
of that branch’s outcome. The product of the probabilities of all speculative branch outcomes eventually
approaches zero after a certain number of speculative branches are visited. At a certain point, the likelihood
of the committed (correct) program execution to proceed down an alternative program path, besides the one
defined by each sequential predicted branch outcome, becomes greater. This would indicate that for very
large speculative machines, multi-path execution is all but a necessity to most efficiently allocate and use the
available execution resources.

Our present work on multipath execution is part of a larger desire to explore large-scale ILP speedups in
sequential programs. This goal has been motivated through the work of researchers like Lam and Wilson [10],
Uht and Sindagi [14], and Gonzalez and Gonzalez [6]. In this paper, we briefly present an overview of our
large-scale distributed microarchitecture suited for achieving large ILP speedups. We then propose a strategy
for handling multipath execution on this microarchitecture.

The rest of this paper is organized as follows. Section 2 provides some background on multipath execution.
In section 3, we provide some analysis of the conditional branches in some benchmark programs. Section 4
presents an overview of our large-scale distributed microarchitecture. We will also discuss how we would like to
spawn speculative execution paths in response to certain conditional branches that are encountered. Section
5 presents some simulation results for various configurations of our machine and how multipath execution
changes the results when applied. Shown first are simulation results for various machine configurations when
execution is in single path mode only. We then show results for the same benchmark suite with varying
numbers of additional speculative execution paths. We summarize and conclude in section 6.

2 Background on Multipath Execution

Early work on multipath execution was dominated by IBM in the late 1970s and 1980s [5]. The earliest
attempts at multipath execution started with the ability to prefetch down both outcomes of a conditional
branch. This became more aggressive to the point of actually executing down both outcomes of a conditional
branch. Aggressively executing down both outcomes of conditional branches has been explored in work such
as that by Wang [17]. More aggressive research by Uht and Sindagi [14] explored the intersection of both
multipath execution and future large-scale microarchitectures capable of possibly hundreds of instructions

Table 1: Benchmarks Analyzed and Some Statistics.

benchmark | prediction accuracy | avg. L1 miss rate | dynamic cond. brach-es | forward branches |

go 72.1% 96.6% 9.0% 89%
gap 94.5% 98.9% 6.2% 91%
bzip 90.5% 98.5% 7.0% 81%
gzip 85.4% 97.0% 8.8% 85%

parser 92.6% 98.3% 13.0% 85%

being executed simultaneously. They also addressed the general question of speculatively executing more than
two paths simultaneously. Work on dual path execution (only two speculative paths) has been done by Heil
and Smith [7]. Examining multipath execution on the PolyPath microarchitecture, Klauser et al explored
several implementation details as well as demonstrating an improvement of three speculative paths over just
having two.

An increasingly attractive approach to multipath execution is that of using a basic simultaneous multi-
threaded (SMT) processor to provide the resources for essentially executing multiple paths of a single archi-
tected program thread. This work follows from the original SMT idea and followed from the work by Tullsen
et al [13]. The work by Tullsen et al focused on making better use of the processor when branch mispre-
dictions are encountered by filling processor resources with work from other architected threads following a
misprediction. An extension of this idea is to use resources for executing the alternative path (not predicted
path) of a mispredicted branch. An example of this approach has been discussed by Wallace et al [16]. This
general approach of combining both simultaneous multithreading with multipath execution appears to be a
good compromise to the problem of most efficiently using processor resources. This approach also lends itself
towards hardware that possibly can be programmed at run-time for providing either maximum single threaded
execution speed or maximum multithreaded throughput.

Ahuja et al [2] explore some limits for speedups from multipath execution but their work is still largely
restricted to more conventional (modest sized) microarchitectures with less than approximately 128 speculative
instructions in flight. Our present work explores the use of multipath execution on a significantly larger
microarchitecture than that of Ahuja or the other past work with the exception of that by Uht and Sindagi
[14]. Our present work is capable of having several hundred or more speculative instructions in flight and is
most patterned after the work by Uht.

3 Conditional Branch Characterization

Since the proper handling of conditional branches is important in any microarchitecture that spawns additional
speculative paths for unresolved branches, some attention is given towards characterizing their behavior. We
focused on five benchmark programs for characterizing branch behavior. The benchmark programs explored
along with some statistics are given in Table 1.

The go benchmark is from the SpecInt-95 suite while the rest are from the SpecInt-2000 suite. All bench-
mark programs were executed for 100 million instructions as a warm up for the simulator. After this they were
simulated for 500 million instructions for which all data was collected. The predictor used was a PAg with a
PBHT of 1024 entries and a GPHT size of 4096 entries. The L1 cache was a 32kB, 2-way set associative, with
1 cycle hit penalty and a 20 cycle miss penalty.

We were interested in the size of the branch domains for both all branches dynamically executed in the
programs as well as for those branches that contribute most to mispredictions. The branch domain size is the
number of instructions on the not-taken output path before a join with the target instruction of the branch.
Figure 1 shows a percent distribution of the number of dynamic branches versus branch domain size. Figure
2 shows a percent distribution of the number of branch mispredictions versus branch domain size. From
these two figures it can be seen that a large fraction of total mispredictions is due to branches with small
domain sizes. This is likely a valuable characteristic to exploit for possible alternative speculative paths in

100

90
80

701

sof-

a0l —— bzip]
—— gap
30f © g0 1
—— gzip
2ol —&— parser |

Percentage of Branches

I I I
50 100 150 200 250 300
Branch Domain Size

Figure 1: Percent Distribution of Dynamic Branches versus Branch Domain Size. Shown are the percent
dynamic branches that have a domain size in instructions at or below a given value.

our proposed microarchitecture. This is so since all of the branch domain instructions for most branches will
be issued into the execution window allowing for both branch outcomes to be executed simultaneously in our
microarchitecture. To get a better understanding of how to handle different branches, we proceeded to define
four orthogonal characteristics for conditional branches that might give us insight into how they might be
handled in the microarchitecture. The four characteristics used to classify each conditional branch are :

e execution frequency
e branch predictability
e direction of the branch target — forward or backward

e distance to the target of the branch

We classify each conditional branch as being either a high dynamic frequency branch or a low dynamic
frequency branch. If the conditional branch is within the top 90% of all dynamically executed conditional
branches, it is classified as a high frequency branch, else it is low frequency. For each conditional branch,
we also accumulate statistics on its predictability. Figure 3 shows the percent distribution of branches versus
prediction accuracy. As can be seen, for most benchmarks the branch predictability is distributed over a large
range of values. One implication of this is that we need the misprediction penalties associated with most of
the branches regardless of their predictability.

Another parameter that is also recorded is the direction of the branch which can simply be either a forward
branch or a backward branch. Finally, the distance of the branch to the instruction at the branch targer is
computed and recorded. The distance is measured in instructions. If the target of the branch is less than 170
instructions from the branch itself, the branch is considered to have a near target, else it is considered to have
a far target. The value of 170 instructions was chosen because for many of the machine configurations that we
will be investigating, this number is approximately between one half of the possible number of speculatively
executed instructions that can be in-flight and two thirds of the total possible number. This will be clarified
later.

bzip
gap
go 1
gzip
parser 4

Percentage of Total Mispredictions

I I I I I I
0 50 100 150 200 250 300 350 400
Branch Domain Size

Figure 2: Percent Distribution of Branch Mispredictions versus Branch Domain Size. Shown are the percent
branch mispredictions that have a domain size in instructions at or below a give value.

100

90 3
—&— parser
—e— go
—=— bzip
— gap
— gzip

80

50 b

40 B

Percentage of Branches

30 b

I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Branch prediction accuracy

Figure 3: Probability Distribution of Branches versus Prediction Rate. Shown are the percentage of dynamic
branches with a predictability at or less than a given prediction accuracy.

4 A Large-scale Distributed Microarchitecture

Our primary goal is to converge on a microarchitecture suitable for extracting large ILP speedups from
sequential programs. This has resulted so far in a very aggressive large (and scalable) microarchitecture capable
of having many hundreds or perhaps thousands of speculatively executed instructions in flight. Scalability of
the microarchitecture is achieved through its distributed nature. In general, scalability requires little to no
dependence on major central microarchitectural hardware structures in the machine. This goal presents many
challenges (not further enumerated here) to say the least but the efficient handling of multipath execution is
one of those challenges.

Future microarchitectures also need to address many associated issues surrounding conditional branches.
Spawning alternative speculative paths when encountering conditional branches is just one aspect of han-
dling the consequences of unresolved control flow. In addition, exploitation of control and data independent
instructions beyond the join of a branch should also be capitalized upon where possible. Further, choosing
which paths in multipath execution should be given priority for machine resources is also a necessary concern.
As shown by Uht and Sindagi [14], giving equal priority to all simultaneous paths of a program is not the
most efficient use of hardware resources. In our microarchicture we will refer to the most predicted path in a
program as the mainline path. This path corresponds to the single speculatively executed path in most con-
ventional superscalar processors. In our microarchitecture, we give execution resource priority to this mainline
path with respect to any possible alternative speculative paths. Since additional speculative paths have lower
priority with respect to the mainline (most predicted) path, they are often referred to as being disjoint paths.
The term disjoint refers to that fact that the assignment of execution resources for that path is likely (and
should likely) be deferred in time as compared with when execution resources are assigned to the mainline
path. This term is taken from Uht’s 1995 work [14].

Figure 4 shows a typical program fragment that highlights some aspects of what we would like our mi-
croarchitecture to address. Mainline path execution (the most predicted path) is shown with the solid bold
control flow edges. Opportunities for the spawning of alternative speculative paths (disjoint paths) are shown
with the lighter dashed control flow edges. In this example, two simple, single-sided hammock branches are
shown in the body of the loop. One is predicted as being taken. The other is predicted to fall through. Our
microarchitecture will to exploit both types of conditional branches by capturing and speculatively executing
all of the instructions in the body of this loop (given this particular case). This is possible due to the ability
of the microarchitecture to both execute large numbers of instructions speculatively but also because our
microarchitecture is specially suited towards handling issues related to multipath execution.

A brief overview of our general large-scale distributed microarchitecture is presented in the next subsection.
A brief general discussion of the basic operation of the machine follows and a discussion of the specific handling
of conditional branches is addressed after that.

4.1 Basic Microarchitecture Components and Layout

In this section we present the basic components of our proposed microarchitecture along with some of their
interconnections. An overall high-level view of the core of our microarchitecture is shown in Figure 5.

We have extended the idea of Tomasulo’s reservation station [12] to provide the basic building block
for a distributed microarchitecture. Tomasulo’s reservation station provided for the simultaneous execution
of different instructions over several function units. Register results from the function units were placed
on a common data bus and looped back to provide source register operands for instructions waiting in the
reservation stations as well as for updating of the register file. In our microarchitecture, output results are
not looped back to the inputs of the reservation stations that provided the results but are rather forwarded to
a new set of stations that form a new spatially separate group from the first. We also extend the idea of the
reservation station to allow for multiple executions (re-executions) of the same instruction in the station. We
keep instructions in their associated reservtion stations until they are retired (either committed or squashed).
We call our adaptation of the reservation station the active station (AS).

Rather than lay the active stations out in silicon simply next to function units that will execute the in-
structions issued to them (like with the original reservation station idea), we lay them out in a two dimensional
grid whereby sequentially issued instructions will go to sequential ASes down a column of the two dimensional
grid of ASes.

—

A100 LW R2,20(R4)
Label Addr Instruction History A104 SUB R2,R2,#1
START: A100 LW R2,20(R4) A108 BEQZ R2,TART
A104 SUB R2,R2#1 |
v
A108 BEQZR2,TAR1 Weakly T o JRS—
A10C ADD R2,R2#4 A110 SW 30(R4) R2
A110 SW 30(R4),R2 !
TAR1: A114 LW R2,30(R4) '
A118 SUB R2,R2#8 Al14 LW R2,28(R4)
T A118 SUB R2,R2,#8
A11C BEQZR2,TAR2 Weakly NT A1C BEQZ R, TAR?
A120 SW 20(R4),R2 l
TAR2: A124 ADD R2,R2#10
A128 SUB R1,R1#1 \ A120 sw 20<R4>,R2\
A12C BNEQZ R1,START Strongly T i
A130 SW 40(R4),R2 S
A124 ADD R2,R2,#10
A128 SUB R1,R1,#1
A12C BNEQZ R1,START
Mainline path e . v
‘ A130 SW 40(R4),R2 ‘

Disjoint path

Figure 4: Example Program Showing Predicted and Disjoint Paths. This example shows both the predicted
path through the program (in bold) as well as where alternative speculative disjoint paths may be spawned

(dashed).
basic layout of execution window
A\ A\
from and to “ “ A A
i doache
@T _-— | branch
Iotad/ predictors
store - - d
AN queues sharing group sharing group ﬁﬁnstruction
issue
buffers
u u
sharing group sharing group

to next column

to next column

from L1
i-cache

—

Figure 5: High-level View of the Distributed Microarchitecture. Shown is a layout of the Active Stations and
Processing Elements along with some bus interconnections to implement a large, distributed microarchitecture.

Dispersed among the active stations are associated execution units. These executions units are represented
in the figure as a processing element (PE). Although an AS always only holds at most a single instruction,
PEs may consist of a unified all-purpose execution unit capable of executing any of the possible machine
instructions or several functionally partitioned units individually tailored for specific classes of instructions
(integer ALU, FP, or other).

Groups of active stations along with their associated processing element are termed sharing groups. Shar-
ing groups somewhat resemble the relationship between the register file, reorder buffer, reservation stations,
and function units of most conventional microarchitectures. They have a relatively high degree of bus inter-
connectivity between them as conventional microarchitectures do. In our case, the active stations serve the
role of both the reservation station and the reorder buffer of more conventional machines.

A scalable interconnect fabric is provided to forward result operands from earlier active stations to later
active stations in program order. Result operands consist of register, memory, and instruction predicates.
We also employ a strategy of predicating all issued instructions within the microarchitecture itself. This is
also invisible from the instruction set architecture of the machine. The interconnect fabric is simply shown
by the bold vertical buses in the figure. These result-forwarding buses loop around from the bottom of left
adjoining columns to the tops of the right adjoining columns. The forwarding from the far lower right also loops
around to the far upper left. In all, the forwarding buses (interconnection fabric) form the characteristic ring
pattern passing by each sharing group in the execution window. As columns are issued new instructions and
eventually retire those instructions, the roles of the leading (most speculative) and trailing (least speculative)
columns rotate among the given hardware columns that are fixed in the silicon. It should be noted that the
interconnection fabric is not entirely passive (or else the microarchitecture would not scale to large sizes) but
rather is an active network. Several active networks are possible. We used a simple one in the present work
where a group of four parallel buses transport result operands to subsequent sharing groups. The buses are
repeated at a fixed interval of every four sharing groups.

The less bold horizontal buses form the paths by which instructions are issued to active stations from the
decoded instruction buffers, shown on the far right. Variations in instruction buffers are possible and may be
thought to resemble trace caches of a sort. Finally, on the far left, horizontal buses take committed program
stores, from retired store instructions residing in the active stations, to the load/store queues (one per row).
The two dimensional grid of active stations along with their interspersed processing elements is termed the
ezecution window.

The example machine configuration of Figure 5, consists of two columns of sharing groups. Each sharing
group contains two columns of active stations (the specific use of which is explained later). Each sharing group
also contains three rows of active stations and a single processing element in the shown case. We generally
characterize a basic machine configuration according to the triple: sharing group rows, active station rows per
sharing group, and sharing group columns. We normally show these numbers concatenated with a hyphen so
that the machine shown in the figure, as an example, would be abbreviated 2-3-2.

The instruction fetch unit (not shown) is responsible for fetching instructions from the memory hierarchy,
these are then decoded and placed into the issue buffers. Currently, branch predictors are provided one
per AS row of the execution window. They are located between the issue buffers and the buses that feed
decoded instruction information into the execution window and the active stations. The branch predictions
flow along with the decoded instruction itself into the execution window when instructions are issued to the
active stations. Updates of the branch predictors come from resolved branches of the same row that they each
serve.

Not shown in the Figure, and outside of the execution window, lies address-interleaved L1 instruction and
data caches, along with interleaved L2 I/D caches and finally, interleaved main memory. Interleaving of the
entire memory subsystem is generally necessary to provide sufficient bandwidth for instruction fetching and
the enhanced load bandwidth needed for large sized machines. All of the word presented in this paper used a
memory subsystem interleave factor of four.

4.2 Basic Machine Operation

Instructions are fetched from memory, decoded, and staged in buffers (not too dissimilar from trace caches).
When an entire column of active stations is free to accept new instructions, generally an entire column of
instructions are issued to the free active station column from a fetch buffer. Conditional branches are predicted

at or just before instructions issue to the ASes. The prediction of the branch outcome prediction is sent along
with the decoded instruction information when instructions are issued to ASes.

All of the active stations in a given column are issued instructions in a single clock. In our present
implementation, newly issued instructions are only issued to a single column of active stations within a
column of sharing groups. The other column of active stations in our current sharing groups (which currently
have a total of two columns of ASes) is reserved for the spawning of additional execution paths as a result of
a condition branch instruction. When and how additional paths are spawned is discussed later.

It should be noted that there are several strategies for issuing instructions to available active station
columns. Since all issued instructions are speculative, instructions from either outgoing path of a conditional
branch can be issued to sequential active stations. The fetch unit is responsible for preparing for such decisions.
Even when a conditional branch is predicted as being taken, instructions may still be issued sequentially down
the not-taken path under most circumstances. If the distance to the target of a branch that is predicted to
be taken is not too large, instructions may be issued along the program static order (or not-taken path) of
the branch in the hopes of capturing hammock styled branch constructs. A more detailed discussion on these
alternatives is presented later in the paper.

Program dependencies (control, register, and memory) are maintained through the use of tags that are
associated with all forwarded operands. This has some resemblance to register tags used in more conventional
microarchitectures but has been more generalized for use in this distributed microarchitecture. Instructions
remain in their associated active stations until they are retired by either being committed or abandoned
(squashed). In this way, the active stations (or rather the whole set of them) fulfill the role of the reorder
buffer or register update unit of more conventional microarchitectures.

Much more detailed information about this microarchitecture can be found in a technical report by Uht et
al [15]. Additionally, a more detailed discussion of the mechanism used for enforcing program dependencies in
this microarchitecture can be found in a report by Kaeli et al [9]. A more detailed discussion about multipath
spawning is given in the following section.

4.3 Machine Handling of Conditional Branches

The run-time machine microarchitecture only has limited information available to it for making certain optional
decisions. There are two major alternatives that the machine needs to constantly consider. The first is
whether to issue instructions to sequential ASes following the not-taken path of the condition branch or to
issue instructions along the taken path. The second major decision to make is whether to spawn an alternative
speculative path on any given conditional branch. The machine only has the following information available
at run-time for making microarchitectural decisions :

e distance to the target of the branch — near/far
e branch target direction — forward/backward

e the branch outcome prediction

Branches with near targets are those where the distance from the branch to the target is smaller than the
total number of instructions that the machine can have in-flight simultaneously. All other branch targets are
considered far targets.

First, if a backward branch is predicted taken, we will speculatively follow it and continue issuing instruc-
tions into the execution window for the mainline path from the target of the branch. For a backward branch
that is predicted not-taken, we continue issuing following the not-taken output path.

If a forward branch has a near target (small domain size), then we issue instructions from the domain of
the branch (following the not-taken output path) whether or not it is the most predicted path. Our mainline
path continues along the predicted branch output path regardless of whether it was the taken or not-taken
one. We spawn a disjoint alternative path for the opposite output of the branch from the mainline path case,
whatever it is. This action provides the benefit of having both the domain and target of the branch in the
execution instruction window of the machine.

For forward branches with a far target, if the branch is predicted taken, we issue following the target of the
branch. If the branch is predicted not-taken, we continue issuing instructions for the mainline path following

Table 2: Machine configurations simulated for each of the benchmark programs.
| config | SG rows | ASes per SG | SG columns

1 8 4 16
2 8 4 8
3 8 8 8
4 8 8 16
) 8 16 16
6 8 16 8

the not-taken outcome of the branch. In both of these cases, we do not spawn an alternative path for this
branch.

5 Simulation Results

We present results from simulations of a set of machine configurations using the general microarchitecture
described previously. We first describe something about our simulation process. We then present simulations
for five benchmark programs on six different machine configurations.

5.1 Methodology

The simulator is a recently built tool that shares some similarity to SimpleScalar [3] but which was not based
on it. We execute SpecInt-2000 and SpecInt-95 programs on simulated machines that feature a MIPS-1 ISA
along with the addition of some MIPS-2 and MIPS-3 ISA instructions. We are using the standard SGI Irix
system libraries so we needed some MIPS-2 and MIPS-3 instructions to accommodate that. All programs were
compiled on an SGI machine under Irix 6.4 and using the standard SGI compiler and linker. All benchmark
programs were compiled with standard optimization (-0) for primarily the MIPS-1 ISA (-032).

5.2 TIPC Results and Discussion

The data below are IPC results for various sized configurations of the machine. Six machine configurations were
simulated. The numbers of each of the major machine components, for each of the six simulated configurations,
are given in Table 2.

The general features of the machine simulated are: 100% hit rate for L1 instruction cache, a 1 cycle hit
delay and 20 cycle miss penalty for the L1 data cache, 100% hit in the 1.2 data cache, an operand forwarding
delay of 1 clock and a general bus delay of 1 clock. The L1 data cache is 32kB 2-way set associative that is
also 4-way interleaved on address bits 2 and 3.

Figure 6 gives IPC results for each of the benchmark programs over various machine configurations. The
results of each benchmark program for varying machine configurations is given in each group.

Each of the machine configurations in Figure 6 consist of three numbers that give: the number of sharing
groups rows, the number of active station rows per sharing group, and the number of sharing group columns
respectively. The number of sharing group rows times the number of active stations per sharing group is the
total number of active stations rows in a configuration. These are all issued instructions together in a single
clock.

As can be seen from the data, the configuration of 8-16-8 provides the best overall IPC for the configurations
simulated. This consists of 128 active stations in each column with 16 columns. Configuration 8-4-8 does not
perform as well as 8-4-16 because it does not have as many columns (only 8 as compared with 16 in the other
configuration) to hide the latencies of instruction execution. Sixteen columns hides more instruction execution
latency than Eight. The 8-4-16 configuration performs poorly as compared with 8-8-8 because the height of a

10

7

6 |

5 O (8,4,16)

s = B (8,4,8)
@) 0@8.8,8)
=, 0 (8,8,16)

H (8,16,16)

5 | M (8,16,8)

1 -

0 -

go gap bzip g7ip parser

Figure 6: IPC Results for Varying Machine Configurations. IPC results for several machine configurations is
shown for each of the five benchmark programs evaluated.

11

column (the primary IPC multiplier) is only 32 and its extra columns are not needed to hide more instruction
execution latency.

Benchmark ’go’ has the poorest branch prediction accuracy and that is the main reason for its lower IPC
numbers.

5.3 Multipath Results and Discussion

In this section we present data corresponding to varying the maximum number of alternative speculative paths
that are allowed. Figure 7 shows the speedup results when multipath execution is enabled. Results for each
benchmark program is presented. The results for each benchmark consists of six groups where each group
represents the results for one of six machine configurations.

Speedups with each group of results is relative to the single-path case with no alternative speculative
paths spawned for any conditional branches. For each benchmark program and for each of the six machine
configurations explored, speedups for cases with a maximum of zero (leftmost) to seven (rightmost) additional
alternative paths are allowed.

The most speedup gained occurs for the go benchmark. To explain this, we need to note that this
benchmark has the lowest branch prediction rate of those that we executed. Spawning disjoint alternative
paths has the effect of reducing the branch misprediction penalty.

The bzip2 benchmark has the lowest speedup of the group. If we look at Figure 1 we see that branches
for the bzip2 program have the largest branch domain size with respect to other benchmarks and as a result
there is less opportunity for spawning disjoint paths.

We also observed a significant speedup for the 8-8-16 machine configuration of for the gap program. Our
preliminary investigations suggest that we might have captured a loop in our execution window that makes
for a substantial speedup through the elimination of the misprediction penalties of its branches.

6 Related Work

Probably the most successful high-TPC machine to date is Lipasti and Shen’s Superspeculative architecture [11],
achieving an IPC of about 7 with realistic hardware assumptions. The Ultrascalar machine [8] achieves
asymptotic scalability, but only realizes a small amount of IPC, due to its conservative execution model. The
Warp Engine [4] uses time tags, like Levo, for a large amount of speculation; however their realization of time
tags is cumbersome, utilizing floating point numbers and machine wide parameter updating.

Nagarajan et al. have proposed a Grid Architecture that builds an array of ALUs, each with limited control,
connected by a operand network [1]. Their system achieves an IPC of 11 on SPEC2000 and Mediabench
benchmarks. While this architecture presents many novel ideas in attempt to reap high IPC, it differs greatly
in its interconnect strategy and register design. They also rely on a compiler to obtain this level of IPC,
whereas the microarchitecture that we have presented does not.

7 Conclusions

We have presented the overview of a large-scale distributed microarchitecture suitable for both extracting high
ILP from sequential programs and for implementing a scheme for multipath execution. Our implementation
of multipath execution is shown to reduce the effects of condition branch mispredictions. This is achieved by
executing down both outcomes of those branches that have relatively small branch domains. These branches
would have otherwise caused larger misprediction penalties and lower overall execution performance in single
path only processors.

References
[1] Nagarajan R., Sankaralingam K., Burger D., Keckler S.W. . A design space evaluation of grid processor architec-

tures. In Proceedings of the 34nd International Symposium on Microarchitecture, New York, NY, Nov 2001. ACM
Press.

12

bzip

go
16 1.6
1.5 15
a 14+ N 1.4
] 2
=
o 1.3 1 @ 13
2 2
72) w
1.2 12
1 14
(8,4,16) (8,16,16) (8,88) (8.16,8) (8,8,16) (8,4.8) gap (8,4,16) (8,16,16) (8,88) (3,168 (83816) 848)
1.6
15
14
=%
2
S 131
=
wn
1.2
1.1 ’I
1
gzip (8,4,16) (8,16,16) (8,8.8) (8,16,8) (8,8,16) (8,4,8) parser
16 16
1.5 15
14
s e 14
T 131 T 13 i
B &
1.2 1 121
L1 111
1+ 1

(8,4,16) (8,16,16) (8,8,8) (8,16,8) (8,8,16) (8,4,8) 84,16 816,16 888 8,168 88,16 848

Figure 7: Multipath speedup for each benchmark. 1 — 7 denote the spawning column. Speedups are relative
to the Single Path execution case.

13

2]

(10]
(11]
[12]

[13]

[14]
[15]
[16]

(17]

Ahuja P.S., Skadron K., Martonosi M., Clark D.W. Multipath execution: Opportunities and limits. In Proceedings
of the 12th International Conference on Supercomputing, New York, NY, July 1998. ACM Press.

Austin T.M., Burger D. SimpleScalar Tutorial . In Proc. of MICRO-30, Nov 1997.

Cleary J.G, Pearson M.W and Kinawi H. The Architecture of an Optimistic CPU: The Warp Engine. In
Proceedings of the Hawaii Internationl Conference on System Science, pages 163172, January 1995.

Conners W.D., Florkiowski J., Patton S.K. The ibm 3033: An inside look. Datamation, pages 198-218, 1979.
Gonzalez J. and Gonzalez A. Limits on Instruction-Level Parallelism with Data Speculation. Technical Report
UPC-DAC-1997-34, UPC, Barcelona Spain, 1997.

Heil T.H., Smith J.E. Selective Dual Path Execution. Technical report, University of Wisconsin - Madison,
Madison, WI, 1996.

Henry D.S and Kuszmaul B.C. and Loh G.H. and Sami R. Circuits for Wide-Window Superscalar Processors. In
Proceedings of the 27th Annual International Symposium on Computer Architecture, pages 236-247. ACM, June
2000.

Kaeli D., Morano D.A., Uht A. Preserving Dependencies in a Large-Scale Distributed Microarchitecture. Technical
Report 022002-001, Dept. of ECE, URI, Dec 2001.

Lam M.S. and Wilson R.P. Limits of Control Flow on Parallelism. In Proc. of ISCA-19, pages 46-57. ACM, May
1992.

Lipasti M.H and Shen J.P. Superarchitecture Microarchitecture for Beyond AD 200. IEEE Computer Magazine,
30(9), September 1997.

Tomasulo R.M. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM Journal of Research and
Development, 11(1):25-33, Jan 1967.

Tullsen D.M., Eggers S.J., Emer J.S., Levy, HM., Lo J.L., Stamm R.L. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithreading processor. In Proceedings of the 28th International
Symposium on Computer Architecture, pages 191-202, New York, NY, May 1996. ACM Press.

Uht A. K. and Sindagi V. Disjoint Eager Execution: An Optimal Form of Speculative Execution. In Proc.
MICRO-28, pages 313-325. ACM, Nov 1995.

Uht A.K., Morano D.A., Khalafi A., de Alba M., Wenisch T., Ashouei M., and Kaeli D. IPC in the 10’s via
Resource Flow Computing with Levo. Technical Report 092001-001, Dept. of ECE, URI, Sept 2001.

Wallace S., Calder B., Tullsen D.M. Threaded multiple path execution. In Proceedings of the 25th International
Symposium on Computer Architecture, New York, NY, June 1998. ACM Press.

Wang S.S.H, Uht A.K. Ideograph/ideogram: Framework/architecture for eager execution. In Proceedings of the
23rd Symposium and Workshop on Microprogramming and Microarchitecture, pages 125-134, New York, NY, Nov
1990. ACM Press.

14

